Predicting Retention Times of Naturally Occurring Phenolic Compounds in Reversed-Phase Liquid Chromatography: A Quantitative Structure-Retention Relationship (QSRR) Approach
نویسندگان
چکیده
Quantitative structure-retention relationships (QSRRs) have successfully been developed for naturally occurring phenolic compounds in a reversed-phase liquid chromatographic (RPLC) system. A total of 1519 descriptors were calculated from the optimized structures of the molecules using MOPAC2009 and DRAGON softwares. The data set of 39 molecules was divided into training and external validation sets. For feature selection and mapping we used step-wise multiple linear regression (SMLR), unsupervised forward selection followed by step-wise multiple linear regression (UFS-SMLR) and artificial neural networks (ANN). Stable and robust models with significant predictive abilities in terms of validation statistics were obtained with negation of any chance correlation. ANN models were found better than remaining two approaches. HNar, IDM, Mp, GATS2v, DISP and 3D-MoRSE (signals 22, 28 and 32) descriptors based on van der Waals volume, electronegativity, mass and polarizability, at atomic level, were found to have significant effects on the retention times. The possible implications of these descriptors in RPLC have been discussed. All the models are proven to be quite able to predict the retention times of phenolic compounds and have shown remarkable validation, robustness, stability and predictive performance.
منابع مشابه
QSRR prediction of the chromatographic retention behavior of painkiller drugs.
Quantitative structure-retention relationship (QSRR) analysis is a useful technique capable of relating chromatographic retention time to the chemical structure of a solute. A QSRR study has been carried out on the reversed-phase high-performance liquid chromatography retention times (log tR) of 62 diverse drugs (painkillers) by using molecular descriptors. Multiple linear regression (MLR) is u...
متن کاملNovel consensus quantitative structure-retention relationship method in prediction of pesticides retention time in nano-LC
In this study, quantitative structure-retention relationship (QSRR) methodology employed for modeling of the retention times of 16 banned pesticides in nano-liquid chromatography (nano-LC) column. Genetic algorithm-multiple linear regression (GA-MLR) method employed for developing global and consensus QSRR models. The best global GA-MLR model was established by adjusting GA parameters. Three de...
متن کاملRP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives
The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with...
متن کاملRP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives
The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with...
متن کاملInformatics aided QSRR study of retention index of some volatile compounds
In the present work, an artificial neural network (ANN) model was used to study the quantitative structure retention relationship (QSRR) of retention index (RI) of some volatile compounds in natural cocoa and conched chocolate powder. Molecular structural descriptors are selected using genetic algorithm to construct the nonlinear QSRR models, kernel partial least squares PLS (KPLS) and Levenber...
متن کامل